Compare commits

..

2 Commits

11 changed files with 435 additions and 1483 deletions

1
.gitignore vendored
View File

@ -1,2 +1 @@
/target /target
/c_version/sudk_c

2
Cargo.lock generated
View File

@ -4,4 +4,4 @@ version = 3
[[package]] [[package]]
name = "sudk" name = "sudk"
version = "0.1.1" version = "0.1.0"

View File

@ -1,19 +1,13 @@
[package] [package]
name = "sudk" name = "sudk"
version = "0.1.1" version = "0.1.0"
authors = ["ddidderr <ddidderr@paul.network>"] authors = ["ddidderr <ddidderr@paul.network>"]
edition = "2021" edition = "2021"
[lints.clippy]
pedantic = { level = "warn", priority = -1 }
todo = "warn"
unwrap_used = "warn"
[dependencies] [dependencies]
[profile.release] [profile.release]
lto = true lto = true
debug = false debug = false
strip = true
panic = "abort"
codegen-units = 1 codegen-units = 1
panic = "abort"

View File

@ -1,6 +0,0 @@
#!/bin/bash
set -e
clang -Weverything -Wno-unsafe-buffer-usage -Werror -O3 -march=native -flto -std=c17 -fstack-protector-all -s -o sudk_c "$1"
time ./sudk_c

View File

@ -1,7 +0,0 @@
#!/bin/bash
set -e
gcc -Wall -Wextra -Werror --std=c17 -march=native -O3 -fstack-protector-all -flto -s -o sudk_c "$1"
time ./sudk_c

View File

@ -1,287 +0,0 @@
#include <stdbool.h>
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#define PFSALLOC(bytes) malloc(bytes)
static inline void Print_Clear() { printf("\x1b\x5b\x48\x1b\x5b\x32\x4a"); }
typedef struct Sudoku {
size_t *field;
size_t *fixed;
size_t *known;
size_t size;
size_t block_size;
size_t pos;
size_t pos_last_placed;
size_t num_fields;
} Sudoku;
static Sudoku *Sudoku_New(size_t block_size) {
Sudoku *s = calloc(1, sizeof(Sudoku));
size_t many_solutions_field[81] = {
0, 0, 0, 0, 0, 0, 0, 0, 9, 0, 0, 0, 0, 8, 9, 0, 2, 0, 0, 0, 0,
0, 2, 0, 4, 0, 0, 0, 0, 4, 0, 6, 0, 0, 0, 8, 0, 0, 0, 5, 0, 0,
0, 0, 0, 0, 6, 5, 0, 0, 2, 0, 7, 4, 0, 3, 0, 0, 0, 5, 0, 4, 0,
0, 0, 1, 8, 0, 0, 0, 0, 0, 0, 0, 8, 2, 0, 0, 0, 6, 0,
};
size_t size = block_size * block_size;
size_t *field = calloc(size * size, sizeof(size_t));
size_t *fixed = calloc(size * size, sizeof(size_t));
size_t *known = calloc(size * size, sizeof(size_t));
printf("num_fields: %zu\n", size * size);
s->field = field;
s->fixed = fixed;
s->known = known;
for (size_t idx = 0; idx < 81; idx++) {
s->field[idx] = many_solutions_field[idx];
}
for (size_t idx = 0; idx < 81; idx++) {
if (s->field[idx] != 0) {
s->fixed[idx] = 1;
s->known[idx] = 1;
}
}
s->size = size;
s->block_size = block_size;
s->pos = 0;
s->pos_last_placed = 0;
s->num_fields = size * size;
return s;
}
static void Sudoku_Print(Sudoku *s) {
for (size_t idx = 0; idx < s->size * s->size; idx++) {
// newline
if (idx != 0 && idx % s->size == 0)
printf("\n");
// nr
printf("%zu", s->field[idx]);
// space
if ((idx + 1) % s->size != 0)
printf(" ");
}
printf("\n");
}
static inline bool Sudoku_Next(Sudoku *s) {
if (s->pos == s->num_fields - 1) {
/*printf("there is no next\n");*/
return false;
}
s->pos++;
return true;
}
static inline bool Sudoku_Prev(Sudoku *s) {
if (s->pos == 0)
return false;
s->pos--;
return true;
}
static inline bool Sudoku_IsFixed(Sudoku *s) { return s->fixed[s->pos] == 1; }
static inline size_t Sudoku_GetFieldAtPos(Sudoku *s, size_t pos) {
return s->field[pos];
}
static inline void Sudoku_Set(Sudoku *s, size_t nr) {
s->field[s->pos] = nr;
s->pos_last_placed = s->pos;
}
static inline void Sudoku_ClearCurrentField(Sudoku *s) { Sudoku_Set(s, 0); }
/*static void Array_Print(char *name, size_t *arr, size_t len) {*/
/*printf("%s: ", name);*/
/*for (size_t idx = 0; idx < len; idx++) {*/
/*if (idx < len - 1)*/
/*printf("%zu ", arr[idx]);*/
/*else*/
/*printf("%zu", arr[idx]);*/
/*}*/
/*printf("\n");*/
/*}*/
static inline bool Array_Contains(size_t *arr, size_t len, size_t nr) {
/*printf("ARRAY_CONTAINS_LEN: %zu\n", len);*/
for (size_t idx = 0; idx < len; idx++) {
if (arr[idx] == nr) {
/*printf("SEARCH FOR %zu --- ", nr);*/
/*Array_Print("ARRAY_CONTAINS_TRUE", arr, len);*/
return true;
}
}
/*printf("SEARCH FOR %zu --- ", nr);*/
/*Array_Print("ARRAY_CONTAINS_FALSE", arr, len);*/
return false;
}
static inline bool Sudoku_IsEnd(Sudoku *s) {
return !Array_Contains(s->field, s->num_fields, 0);
}
static inline bool Sudoku_GotoPrevFreeField(Sudoku *s) {
do {
if (!Sudoku_IsFixed(s))
return true;
} while (Sudoku_Prev(s));
return false;
}
static inline bool Sudoku_GotoNextFreeField(Sudoku *s) {
/*printf("Sudoku_GotoNextFreeField\n");*/
do {
if (!Sudoku_IsFixed(s))
return true;
} while (Sudoku_Next(s));
return false;
}
static inline size_t *Sudoku_GetRow(Sudoku *s) {
size_t *tmp = PFSALLOC(s->size * sizeof(size_t));
for (size_t pos = 0; pos < s->size; pos++) {
tmp[pos] = Sudoku_GetFieldAtPos(s, (s->pos / s->size) * s->size + pos);
}
return tmp;
}
static inline size_t *Sudoku_GetCol(Sudoku *s) {
size_t *tmp = PFSALLOC(s->size * sizeof(size_t));
for (size_t pos = 0; pos < s->size; pos++) {
tmp[pos] = Sudoku_GetFieldAtPos(s, pos * s->size + s->pos % s->size);
}
return tmp;
}
static inline size_t *Sudoku_GetBlock(Sudoku *s) {
size_t *tmp = PFSALLOC(s->size * sizeof(size_t));
size_t block_start_row = s->pos / s->size / s->block_size * s->block_size;
size_t block_start_col = s->pos % s->size / s->block_size * s->block_size;
for (size_t r = 0; r < s->block_size; r++) {
for (size_t c = 0; c < s->block_size; c++) {
tmp[r * s->block_size + c] = Sudoku_GetFieldAtPos(
s, s->size * (block_start_row + r) + block_start_col + c);
}
}
return tmp;
}
static inline bool Sudoku_BlockOk(Sudoku *s, size_t nr) {
size_t *block = Sudoku_GetBlock(s);
/*Array_Print("BLOCK", block, s->size);*/
bool ok = !Array_Contains(block, s->size, nr);
return ok;
}
static inline bool Sudoku_RowOk(Sudoku *s, size_t nr) {
size_t *row = Sudoku_GetRow(s);
bool ok = !Array_Contains(row, s->size, nr);
return ok;
}
static inline bool Sudoku_ColOk(Sudoku *s, size_t nr) {
size_t *col = Sudoku_GetCol(s);
bool ok = !Array_Contains(col, s->size, nr);
return ok;
}
static inline bool Sudoku_Ok(Sudoku *s, size_t nr) {
return Sudoku_BlockOk(s, nr) && Sudoku_ColOk(s, nr) && Sudoku_RowOk(s, nr);
}
static inline bool Sudoku_PutValidNr(Sudoku *s) {
size_t current_nr = Sudoku_GetFieldAtPos(s, s->pos);
/*printf("%s() pos=%zu current_nr=%zu\n", __func__, s->pos, current_nr);*/
for (size_t nr = current_nr; nr < s->size + 1; nr++) {
if (Sudoku_Ok(s, nr)) {
/*printf("%s() pos=%zu current_nr=%zu nr=%zu\n", __func__, s->pos,*/
/*current_nr, nr);*/
Sudoku_Set(s, nr);
return true;
}
}
return false;
}
static bool Sudoku_SolveBacktracking(Sudoku *s) {
bool found_solution = false;
size_t num_solutions = 0;
while (1) {
/*printf("LOOP: pos=%zu\n", s->pos);*/
/*Sudoku_Print(s);*/
if (Sudoku_IsEnd(s)) {
/*printf("END\n");*/
found_solution = true;
num_solutions++;
if (num_solutions % 100 == 0) {
Print_Clear();
printf("Solutions: %zu\n", num_solutions);
Sudoku_Print(s);
}
if (Sudoku_IsFixed(s)) {
/*printf("fixed\n");*/
continue;
}
Sudoku_ClearCurrentField(s);
Sudoku_Prev(s);
Sudoku_GotoPrevFreeField(s);
}
if (Sudoku_IsFixed(s)) {
/*printf("fixed -> goto next\n");*/
Sudoku_Next(s);
continue;
}
if (Sudoku_GotoNextFreeField(s)) {
if (Sudoku_PutValidNr(s)) {
Sudoku_Next(s);
continue;
} else {
Sudoku_ClearCurrentField(s);
if (!Sudoku_Prev(s)) {
printf("Number of solutions: %zu\n", num_solutions);
break;
}
if (!Sudoku_GotoPrevFreeField(s)) {
printf("Number of solutions: %zu\n", num_solutions);
break;
}
}
}
}
return found_solution;
}
int main() {
Sudoku *s = Sudoku_New(3);
Sudoku_Print(s);
Sudoku_SolveBacktracking(s);
/*Sudoku_Print(s);*/
}

View File

@ -1,278 +0,0 @@
#include <stdbool.h>
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
static size_t *tmpArr;
static inline void Print_Clear() { printf("\x1b\x5b\x48\x1b\x5b\x32\x4a"); }
typedef struct Sudoku {
size_t *field;
size_t *fixed;
size_t size;
size_t block_size;
size_t pos;
size_t pos_last_placed;
size_t num_fields;
} Sudoku;
static Sudoku *Sudoku_New(size_t block_size) {
Sudoku *s = calloc(1, sizeof(Sudoku));
size_t many_solutions_field[81] = {
0, 0, 0, 0, 0, 0, 0, 0, 9, 0, 0, 0, 0, 8, 9, 0, 2, 0, 0, 0, 0,
0, 2, 0, 4, 0, 0, 0, 0, 4, 0, 6, 0, 0, 0, 8, 0, 0, 0, 5, 0, 0,
0, 0, 0, 0, 6, 5, 0, 0, 2, 0, 7, 4, 0, 3, 0, 0, 0, 5, 0, 4, 0,
0, 0, 1, 8, 0, 0, 0, 0, 0, 0, 0, 8, 2, 0, 0, 0, 6, 0,
};
size_t size = block_size * block_size;
size_t *field = calloc(size * size, sizeof(size_t));
size_t *fixed = calloc(size * size, sizeof(size_t));
printf("num_fields: %zu\n", size * size);
s->field = field;
s->fixed = fixed;
for (size_t idx = 0; idx < 81; idx++) {
s->field[idx] = many_solutions_field[idx];
}
for (size_t idx = 0; idx < 81; idx++) {
if (s->field[idx] != 0) {
s->fixed[idx] = 1;
}
}
s->size = size;
s->block_size = block_size;
s->pos = 0;
s->pos_last_placed = 0;
s->num_fields = size * size;
tmpArr = calloc(s->size, sizeof(size_t));
return s;
}
static void Sudoku_Print(Sudoku *s) {
for (size_t idx = 0; idx < s->size * s->size; idx++) {
// newline
if (idx != 0 && idx % s->size == 0)
printf("\n");
// nr
printf("%zu", s->field[idx]);
// space
if ((idx + 1) % s->size != 0)
printf(" ");
}
printf("\n");
}
static inline bool Sudoku_Next(Sudoku *s) {
if (s->pos == s->num_fields - 1) {
/*printf("there is no next\n");*/
return false;
}
s->pos++;
return true;
}
static inline bool Sudoku_Prev(Sudoku *s) {
if (s->pos == 0)
return false;
s->pos--;
return true;
}
static inline bool Sudoku_IsFixed(Sudoku *s) { return s->fixed[s->pos] == 1; }
static inline size_t Sudoku_GetFieldAtPos(Sudoku *s, size_t pos) {
return s->field[pos];
}
static inline void Sudoku_Set(Sudoku *s, size_t nr) {
s->field[s->pos] = nr;
s->pos_last_placed = s->pos;
}
static inline void Sudoku_ClearCurrentField(Sudoku *s) { Sudoku_Set(s, 0); }
static inline bool Array_Contains(size_t *arr, size_t len, size_t nr) {
/*printf("ARRAY_CONTAINS_LEN: %zu\n", len);*/
for (size_t idx = 0; idx < len; idx++) {
if (arr[idx] == nr) {
/*printf("SEARCH FOR %zu --- ", nr);*/
/*Array_Print("ARRAY_CONTAINS_TRUE", arr, len);*/
return true;
}
}
/*printf("SEARCH FOR %zu --- ", nr);*/
/*Array_Print("ARRAY_CONTAINS_FALSE", arr, len);*/
return false;
}
static inline bool Sudoku_IsEnd(Sudoku *s) {
return !Array_Contains(s->field, s->num_fields, 0);
}
static inline bool Sudoku_GotoPrevFreeField(Sudoku *s) {
do {
if (!Sudoku_IsFixed(s))
return true;
} while (Sudoku_Prev(s));
return false;
}
static inline bool Sudoku_GotoNextFreeField(Sudoku *s) {
/*printf("Sudoku_GotoNextFreeField\n");*/
do {
if (!Sudoku_IsFixed(s))
return true;
} while (Sudoku_Next(s));
return false;
}
static inline size_t *Sudoku_GetRow(Sudoku *s) {
for (size_t pos = 0; pos < s->size; pos++) {
tmpArr[pos] = Sudoku_GetFieldAtPos(s, (s->pos / s->size) * s->size + pos);
}
return tmpArr;
}
static inline size_t *Sudoku_GetCol(Sudoku *s) {
for (size_t pos = 0; pos < s->size; pos++) {
tmpArr[pos] = Sudoku_GetFieldAtPos(s, pos * s->size + s->pos % s->size);
}
return tmpArr;
}
static inline size_t *Sudoku_GetBlock(Sudoku *s) {
size_t block_start_row = s->pos / s->size / s->block_size * s->block_size;
size_t block_start_col = s->pos % s->size / s->block_size * s->block_size;
for (size_t r = 0; r < s->block_size; r++) {
for (size_t c = 0; c < s->block_size; c++) {
tmpArr[r * s->block_size + c] = Sudoku_GetFieldAtPos(
s, s->size * (block_start_row + r) + block_start_col + c);
}
}
return tmpArr;
}
static inline bool Sudoku_BlockOk(Sudoku *s, size_t nr) {
size_t *block = Sudoku_GetBlock(s);
/*Array_Print("BLOCK", block, s->size);*/
bool ok = !Array_Contains(block, s->size, nr);
return ok;
}
static inline bool Sudoku_RowOk(Sudoku *s, size_t nr) {
size_t *row = Sudoku_GetRow(s);
bool ok = !Array_Contains(row, s->size, nr);
return ok;
}
static inline bool Sudoku_ColOk(Sudoku *s, size_t nr) {
size_t *col = Sudoku_GetCol(s);
bool ok = !Array_Contains(col, s->size, nr);
return ok;
}
static inline bool Sudoku_Ok(Sudoku *s, size_t nr) {
return Sudoku_BlockOk(s, nr) && Sudoku_ColOk(s, nr) && Sudoku_RowOk(s, nr);
}
static inline bool Sudoku_PutValidNr(Sudoku *s) {
size_t current_nr = Sudoku_GetFieldAtPos(s, s->pos);
/*printf("%s() pos=%zu current_nr=%zu\n", __func__, s->pos, current_nr);*/
for (size_t nr = current_nr; nr < s->size + 1; nr++) {
if (Sudoku_Ok(s, nr)) {
/*printf("%s() pos=%zu current_nr=%zu nr=%zu\n", __func__, s->pos,*/
/*current_nr, nr);*/
Sudoku_Set(s, nr);
return true;
}
}
return false;
}
static bool Sudoku_SolveBacktracking(Sudoku *s) {
bool found_solution = false;
size_t num_solutions = 0;
while (1) {
/*printf("LOOP: pos=%zu\n", s->pos);*/
/*Sudoku_Print(s);*/
if (Sudoku_IsEnd(s)) {
/*printf("END\n");*/
found_solution = true;
num_solutions++;
if (num_solutions % 100 == 0) {
Print_Clear();
printf("Solutions: %zu\n", num_solutions);
Sudoku_Print(s);
}
if (Sudoku_IsFixed(s)) {
/*printf("fixed\n");*/
continue;
}
Sudoku_ClearCurrentField(s);
Sudoku_Prev(s);
Sudoku_GotoPrevFreeField(s);
}
if (Sudoku_IsFixed(s)) {
/*printf("fixed -> goto next\n");*/
Sudoku_Next(s);
continue;
}
if (Sudoku_GotoNextFreeField(s)) {
if (Sudoku_PutValidNr(s)) {
Sudoku_Next(s);
continue;
} else {
Sudoku_ClearCurrentField(s);
if (!Sudoku_Prev(s)) {
printf("Number of solutions: %zu\n", num_solutions);
break;
}
if (!Sudoku_GotoPrevFreeField(s)) {
printf("Number of solutions: %zu\n", num_solutions);
break;
}
}
}
}
return found_solution;
}
static void Sudoku_Free(Sudoku *s) {
free(s->field);
free(s->fixed);
free(s);
s = NULL;
}
int main() {
Sudoku *s = Sudoku_New(3);
Sudoku_Print(s);
Sudoku_SolveBacktracking(s);
Sudoku_Free(s);
free(tmpArr);
}

View File

@ -1,266 +0,0 @@
#include <stdbool.h>
#include <stddef.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
static inline void Print_Clear(void) { printf("\x1b\x5b\x48\x1b\x5b\x32\x4a"); }
typedef struct Sudoku {
uint8_t *field;
bool *fixed;
size_t size;
size_t block_size;
size_t pos;
size_t pos_last_placed;
size_t num_fields;
} Sudoku;
static Sudoku *Sudoku_New(size_t block_size) {
Sudoku *s = calloc(1, sizeof(Sudoku));
// clang-format off
uint8_t many_solutions_field[81] = {
0, 0, 0, 0, 0, 0, 0, 0, 9,
0, 0, 0, 0, 8, 9, 0, 2, 0,
0, 0, 0, 0, 2, 0, 4, 0, 0,
0, 0, 4, 0, 6, 0, 0, 0, 8,
0, 0, 0, 5, 0, 0, 0, 0, 0,
0, 6, 5, 0, 0, 2, 0, 7, 4,
0, 3, 0, 0, 0, 5, 0, 4, 0,
0, 0, 1, 8, 0, 0, 0, 0, 0,
0, 0, 8, 2, 0, 0, 0, 6, 0,
};
// clang-format on
size_t size = block_size * block_size;
uint8_t *field = calloc(size * size, sizeof(uint8_t));
bool *fixed = calloc(size * size, sizeof(bool));
printf("num_fields: %zu\n", size * size);
s->field = field;
s->fixed = fixed;
for (size_t idx = 0; idx < 81; idx++) {
s->field[idx] = many_solutions_field[idx];
}
for (size_t idx = 0; idx < 81; idx++) {
if (s->field[idx] != 0) {
s->fixed[idx] = true;
}
}
s->size = size;
s->block_size = block_size;
s->pos = 0;
s->pos_last_placed = 0;
s->num_fields = size * size;
return s;
}
static inline void Sudoku_Print(Sudoku *s) {
for (size_t idx = 0; idx < s->num_fields; idx++) {
// newline
if (idx != 0 && idx % s->size == 0)
printf("\n");
// nr
printf("%hhu", s->field[idx]);
// space
if ((idx + 1) % s->size != 0)
printf(" ");
}
printf("\n");
}
static inline bool Sudoku_Next(Sudoku *s) {
if (s->pos == s->num_fields - 1) {
return false;
}
s->pos++;
return true;
}
static inline bool Sudoku_Prev(Sudoku *s) {
if (s->pos == 0)
return false;
s->pos--;
return true;
}
static inline bool Sudoku_IsFixed(Sudoku *s) { return s->fixed[s->pos]; }
static inline uint8_t Sudoku_GetFieldAtPos(Sudoku *s, size_t pos) {
return s->field[pos];
}
static inline void Sudoku_Set(Sudoku *s, uint8_t nr) {
s->field[s->pos] = nr;
s->pos_last_placed = s->pos;
}
static inline void Sudoku_ClearCurrentField(Sudoku *s) { Sudoku_Set(s, 0); }
static inline bool Array_Contains(uint8_t *arr, size_t len, uint8_t nr) {
for (size_t idx = 0; idx < len; idx++) {
if (arr[idx] == nr) {
return true;
}
}
return false;
}
static inline bool Sudoku_IsEnd(Sudoku *s) {
return !Array_Contains(s->field, s->num_fields, 0);
}
static inline bool Sudoku_GotoPrevFreeField(Sudoku *s) {
do {
if (!Sudoku_IsFixed(s))
return true;
} while (Sudoku_Prev(s));
return false;
}
static inline bool Sudoku_GotoNextFreeField(Sudoku *s) {
do {
if (!Sudoku_IsFixed(s))
return true;
} while (Sudoku_Next(s));
return false;
}
static inline void Sudoku_GetRow(Sudoku *s, uint8_t *row) {
for (size_t pos = 0; pos < s->size; pos++) {
row[pos] = Sudoku_GetFieldAtPos(s, (s->pos / s->size) * s->size + pos);
}
}
static inline void Sudoku_GetCol(Sudoku *s, uint8_t *col) {
for (size_t pos = 0; pos < s->size; pos++) {
col[pos] = Sudoku_GetFieldAtPos(s, pos * s->size + s->pos % s->size);
}
}
static inline void Sudoku_GetBlock(Sudoku *s, uint8_t *block) {
size_t block_start_row = s->pos / s->size / s->block_size * s->block_size;
size_t block_start_col = s->pos % s->size / s->block_size * s->block_size;
for (size_t r = 0; r < s->block_size; r++) {
for (size_t c = 0; c < s->block_size; c++) {
block[r * s->block_size + c] = Sudoku_GetFieldAtPos(
s, s->size * (block_start_row + r) + block_start_col + c);
}
}
}
static inline bool Sudoku_BlockOk(Sudoku *s, uint8_t nr) {
bool ok;
uint8_t block[9] = {0};
Sudoku_GetBlock(s, block);
ok = !Array_Contains(block, s->size, nr);
return ok;
}
static inline bool Sudoku_RowOk(Sudoku *s, uint8_t nr) {
bool ok;
uint8_t row[9] = {0};
Sudoku_GetRow(s, row);
ok = !Array_Contains(row, s->size, nr);
return ok;
}
static inline bool Sudoku_ColOk(Sudoku *s, uint8_t nr) {
bool ok;
uint8_t col[9] = {0};
Sudoku_GetCol(s, col);
ok = !Array_Contains(col, s->size, nr);
return ok;
}
static inline bool Sudoku_Ok(Sudoku *s, uint8_t nr) {
return Sudoku_BlockOk(s, nr) && Sudoku_ColOk(s, nr) && Sudoku_RowOk(s, nr);
}
static inline bool Sudoku_PutValidNr(Sudoku *s) {
uint8_t current_nr = Sudoku_GetFieldAtPos(s, s->pos);
for (uint8_t nr = current_nr; nr < s->size + 1; nr++) {
if (Sudoku_Ok(s, nr)) {
Sudoku_Set(s, nr);
return true;
}
}
return false;
}
static bool Sudoku_SolveBacktracking(Sudoku *s) {
bool found_solution = false;
size_t num_solutions = 0;
while (1) {
if (Sudoku_IsEnd(s)) {
found_solution = true;
num_solutions++;
if (num_solutions % 100 == 0) {
Print_Clear();
printf("Solutions: %zu\n", num_solutions);
Sudoku_Print(s);
}
if (Sudoku_IsFixed(s)) {
continue;
}
Sudoku_ClearCurrentField(s);
Sudoku_Prev(s);
Sudoku_GotoPrevFreeField(s);
}
if (Sudoku_IsFixed(s)) {
Sudoku_Next(s);
continue;
}
if (Sudoku_GotoNextFreeField(s)) {
if (Sudoku_PutValidNr(s)) {
Sudoku_Next(s);
continue;
} else {
Sudoku_ClearCurrentField(s);
if (!Sudoku_Prev(s)) {
printf("Number of solutions: %zu\n", num_solutions);
break;
}
if (!Sudoku_GotoPrevFreeField(s)) {
printf("Number of solutions: %zu\n", num_solutions);
break;
}
}
}
}
return found_solution;
}
static void Sudoku_Free(Sudoku *s) {
free(s->field);
free(s->fixed);
free(s);
s = NULL;
}
int main(void) {
Sudoku *s = Sudoku_New(3);
Sudoku_Print(s);
Sudoku_SolveBacktracking(s);
Sudoku_Free(s);
}

File diff suppressed because one or more lines are too long

Before

Width:  |  Height:  |  Size: 31 KiB

View File

@ -1,3 +0,0 @@
group_imports = "StdExternalCrate"
imports_granularity = "Crate"
imports_layout = "HorizontalVertical"

View File

@ -1,39 +1,99 @@
use std::time::Instant; use std::time::Instant;
const BLOCK_SIZE: usize = 3; #[derive(Copy, Clone, Debug)]
const SIZE: usize = BLOCK_SIZE * BLOCK_SIZE; struct Bitset {
const NUM_FIELDS: usize = SIZE * SIZE; set: u16,
fn print_gray() {
print!("\x1b\x5b\x31\x3b\x33\x30\x6d");
} }
fn print_green() { impl Bitset {
print!("\x1b\x5b\x31\x3b\x33\x32\x6d"); pub fn new() -> Self {
Self { set: 0 }
} }
fn print_neutral() { #[inline(always)]
print!("\x1b\x5b\x31\x3b\x30\x6d"); fn get(&self, nr: usize) -> bool {
self.set & (1 << nr) != 0
} }
fn print_clear() { #[inline(always)]
print!("\x1b\x5b\x48\x1b\x5b\x32\x4a"); fn set(&mut self, nr: usize) {
self.set |= 1 << nr;
} }
#[inline(always)]
fn unset(&mut self, nr: usize) {
self.set &= !(1 << nr);
}
}
const BLOCK_SIZE: usize = 4;
//const MAX_BLOCK_SIZE: usize = 10;
struct SField { struct SField {
field: Vec<u8>, field: Vec<usize>,
skip_forward: Vec<u8>, fixed: Vec<usize>,
skip_backward: Vec<u8>, size: usize,
pos: usize, pos: usize,
possible_values: Vec<Vec<u8>>, pos_last_placed: usize,
num_fields: usize,
possible_values: Vec<Vec<usize>>,
// For each row/col/block we create a bitset that represents the numbers
// that are already in that row, col or block.
// This way we can check very fast if a nr fits into a specific field or not.
rows: [Bitset; BLOCK_SIZE * BLOCK_SIZE],
cols: [Bitset; BLOCK_SIZE * BLOCK_SIZE],
blocks: [Bitset; BLOCK_SIZE * BLOCK_SIZE],
}
#[inline(always)]
fn xy_to_pos(x: usize, y: usize, size: usize) -> usize {
y * size + x
}
#[inline(always)]
fn pos_to_xy_blocknr(pos: usize, size: usize) -> (usize, usize, usize) {
let x = pos % size;
let y = pos / size;
let block_x = x / BLOCK_SIZE;
let block_y = y / BLOCK_SIZE;
let block_nr = block_y * BLOCK_SIZE + block_x;
(x, y, block_nr)
} }
impl SField { impl SField {
pub fn new() -> SField { pub fn new() -> SField {
const SIZE: usize = BLOCK_SIZE * BLOCK_SIZE;
// EMPTY FIELD
// let field = vec![0; size * size];
#[rustfmt::skip] #[rustfmt::skip]
let field = vec![ let field = match BLOCK_SIZE {
0,0,0,0,0,0,0,0,0, 4 => vec![
0,0,0,0,8,9,0,0,0, 0usize,15,0,0,0,0,11,4,0,5,0,0,0,0,12,8,
12,0,0,9,0,1,0,5,0,0,8,15,0,0,0,13,
0,0,3,0,0,10,13,0,0,11,4,0,15,0,6,0,
13,10,0,11,0,0,0,14,0,3,2,0,0,9,0,0,
0,0,15,10,8,0,0,0,0,0,14,0,0,6,2,0,
0,0,14,0,0,0,6,0,0,0,0,0,1,0,0,0,
0,11,0,8,3,0,15,1,6,0,0,0,0,0,0,7,
0,6,0,7,0,0,0,0,8,13,0,0,10,0,0,0,
0,14,0,2,0,0,0,0,3,0,5,0,11,15,9,0,
0,0,0,12,11,0,2,0,0,0,0,0,0,0,0,0,
0,8,0,0,6,14,1,0,13,15,0,0,0,0,0,10,
10,0,0,3,9,0,7,0,0,1,0,0,13,12,8,0,
7,0,0,0,0,0,14,0,0,0,0,0,0,0,0,9,
0,3,0,14,0,0,9,6,0,0,0,0,0,4,0,0,
0,4,6,0,0,7,0,0,0,0,0,0,0,0,0,0,
5,2,0,0,0,4,10,15,1,0,3,0,0,0,7,0,
],
3 => vec![
0,0,0,0,0,0,0,0,9,
0,0,0,0,8,9,0,2,0,
0,0,0,0,2,0,4,0,0, 0,0,0,0,2,0,4,0,0,
0,0,4,0,6,0,0,0,8, 0,0,4,0,6,0,0,0,8,
0,0,0,5,0,0,0,0,0, 0,0,0,5,0,0,0,0,0,
@ -41,74 +101,149 @@ impl SField {
0,3,0,0,0,5,0,4,0, 0,3,0,0,0,5,0,4,0,
0,0,1,8,0,0,0,0,0, 0,0,1,8,0,0,0,0,0,
0,0,8,2,0,0,0,6,0, 0,0,8,2,0,0,0,6,0,
]; ],
_ => panic!("Unsupported block size. Only 3 and 4 is ok for now.")
let mut sudoku = SField {
field,
skip_forward: vec![0; NUM_FIELDS + 1],
skip_backward: vec![0; NUM_FIELDS + 1],
pos: 0,
possible_values: vec![vec![]; NUM_FIELDS],
}; };
sudoku.build_possible_values_db(); // MANY SOLUTIONS
// #[rustfmt::skip]
// let field = vec![
// 0,0,0,0,0,0,0,0,9,
// 0,0,0,0,8,9,0,2,0,
// 0,0,0,0,2,0,4,0,0,
// 0,0,4,0,6,0,0,0,8,
// 0,0,0,5,0,0,0,0,0,
// 0,6,5,0,0,2,0,7,4,
// 0,3,0,0,0,5,0,4,0,
// 0,0,1,8,0,0,0,0,0,
// 0,0,8,2,0,0,0,6,0,
// ];
sudoku.build_skip_dbs(); // HARD
// #[rustfmt::skip]
// let field = vec![
// 8,4,0,0,6,0,5,0,1,
// 0,0,0,0,0,3,0,4,0,
// 0,0,6,9,0,0,0,0,7,
// 0,2,0,7,1,0,0,0,6,
// 0,0,0,6,3,0,0,0,0,
// 9,0,0,0,0,0,0,5,0,
// 0,0,0,0,4,0,0,6,0,
// 2,0,0,0,0,0,1,8,0,
// 0,0,5,0,0,0,3,0,0,
// ];
sudoku // EASY
// #[rustfmt::skip]
// let field = vec![
// 5,9,0,6,1,3,0,0,0,
// 0,0,0,9,0,0,5,0,0,
// 8,0,3,0,5,7,6,4,0,
// 0,7,5,0,0,0,4,0,6,
// 0,6,0,7,4,0,2,0,8,
// 2,0,8,0,0,0,7,5,3,
// 0,0,0,5,6,1,0,7,0,
// 0,0,1,0,7,0,9,0,0,
// 7,3,6,0,2,0,0,0,0,
// ];
let mut fixed = Vec::with_capacity(SIZE * SIZE);
field.iter().for_each(|e| {
if *e == 0 {
fixed.push(0);
} else {
fixed.push(1);
}
});
// create bitsets
// rows
let mut bit_rows = [Bitset::new(); SIZE];
for row_nr in 0..SIZE {
let mut row = [0; SIZE];
for count in 0..SIZE {
row[count] = field[xy_to_pos(count, row_nr, SIZE)];
} }
fn build_skip_dbs(&mut self) { row.into_iter()
fn find_fixed_streak_forward(mut idx: usize, field: &[u8]) -> u8 { .filter(|val| *val != 0)
let mut fixed_count = 1; .for_each(|val| bit_rows[row_nr].set(val - 1));
idx += 1;
while idx < NUM_FIELDS && field[idx] > 0 {
fixed_count += 1;
idx += 1;
} }
fixed_count // cols
let mut bit_cols = [Bitset::new(); SIZE];
for col_nr in 0..SIZE {
let mut col = [0; SIZE];
for count in 0..SIZE {
col[count] = field[xy_to_pos(col_nr, count, SIZE)];
} }
fn find_fixed_streak_backward(mut idx: usize, field: &[u8]) -> u8 { col.into_iter()
let mut fixed_count = 1; .filter(|val| *val != 0)
idx -= 1; .for_each(|val| bit_cols[col_nr].set(val - 1));
while idx < NUM_FIELDS && field[idx] > 0 {
fixed_count += 1;
idx -= 1;
} }
fixed_count // blocks
let mut bit_blocks = [Bitset::new(); SIZE];
for block_nr in 0..SIZE {
let block_start_x = block_nr * BLOCK_SIZE % SIZE;
let block_start_y = block_nr * BLOCK_SIZE / SIZE * BLOCK_SIZE;
let mut block = [0; SIZE];
for count in 0..SIZE {
let block_offset_x = count % BLOCK_SIZE;
let block_offset_y = count / BLOCK_SIZE;
let field_x = block_start_x + block_offset_x;
let field_y = block_start_y + block_offset_y;
//dbg!(
//block_nr,
//block_start_x,
//block_start_y,
//block_offset_x,
//block_offset_y,
//field_x,
//field_y,
//);
block[count] = field[xy_to_pos(field_x, field_y, SIZE)];
} }
let fwd = &mut self.skip_forward; block
for (idx, nr) in self.field.iter().enumerate() { .into_iter()
match nr { .filter(|x| *x != 0)
0 => fwd[idx] = *nr, .for_each(|x| bit_blocks[block_nr].set(x - 1));
_ => fwd[idx] = find_fixed_streak_forward(idx, &self.field),
}
} }
let bwd = &mut self.skip_backward; //dbg!(bit_rows);
for (idx, nr) in self.field.iter().enumerate().rev() { //dbg!(bit_cols);
match nr { //dbg!(bit_blocks);
0 => bwd[idx + 1] = *nr,
_ => bwd[idx + 1] = find_fixed_streak_backward(idx, &self.field), SField {
} field,
fixed,
size: SIZE,
pos: 0,
pos_last_placed: 0,
num_fields: SIZE * SIZE,
possible_values: vec![vec![]; SIZE * SIZE],
rows: bit_rows,
cols: bit_cols,
blocks: bit_blocks,
} }
} }
fn build_possible_values_db(&mut self) { fn build_possible_values_db(&mut self) {
for idx in 0..NUM_FIELDS { for idx in 0..self.num_fields {
if self.field[idx] != 0 { if self.fixed[idx] == 1 {
continue; continue;
} }
self.pos = idx; self.pos = idx;
// try all values between 1 and =self.size and remember the good ones // try all values between 1 and =self.size and remember the good ones
let mut good_ones = Vec::with_capacity(SIZE); let mut good_ones = Vec::with_capacity(self.size);
for nr in 1..=(u8::try_from(SIZE).expect("SIZE is too big")) { for nr in 1..=self.size {
if self.ok(nr) { if self.ok(nr) {
good_ones.push(nr); good_ones.push(nr);
} }
@ -119,87 +254,208 @@ impl SField {
} }
pub fn solve_backtracking(&mut self) -> bool { pub fn solve_backtracking(&mut self) -> bool {
let mut found_solution = false;
let mut num_solutions = 0; let mut num_solutions = 0;
let mut loop_count = 0;
let mut last_loop_count = 0;
let mut now = Instant::now();
loop { loop {
if !self.put_valid_nr() { //std::thread::sleep_ms(30);
self.clear_current_field(); //self.print_clear();
if !self.prev() { //self.print();
print_clear(); loop_count += 1;
if now.elapsed().as_millis() >= 1000 {
now = Instant::now();
self.print_clear();
self.print(); self.print();
println!("Number of solutions: {num_solutions}"); println!("{} loops/s", loop_count - last_loop_count);
break; last_loop_count = loop_count;
} }
if self.is_end() {
found_solution = true;
num_solutions += 1;
//if num_solutions % 100 == 0 {
//self.print_clear();
//println!("Solutions: {}", num_solutions);
//self.print();
//}
if self.is_fixed() {
continue;
}
self.clear_current_field();
self.prev();
self.goto_prev_free_field();
}
if self.is_fixed() {
self.next();
continue; continue;
} }
if !self.next() { if self.goto_next_free_field() {
num_solutions += 1; if self.put_valid_nr() {
if num_solutions % 10_000 == 0 { self.next();
print_clear(); continue;
self.print(); } else {
println!("Number of solutions: {num_solutions}"); //println!("put_valid_nr failed for pos {}", self.pos);
} //std::thread::sleep_ms(300);
self.clear_current_field(); self.clear_current_field();
self.prev(); if !self.prev() {
println!("Number of solutions: {}", num_solutions);
break;
}
if !self.goto_prev_free_field() {
println!("Number of solutions: {}", num_solutions);
break;
}
}
} }
} }
num_solutions > 0 found_solution
} }
#[inline(always)]
fn print_gray(&self) {
print!("\x1b\x5b\x31\x3b\x33\x30\x6d");
}
#[inline(always)]
fn print_green(&self) {
print!("\x1b\x5b\x31\x3b\x33\x32\x6d");
}
#[inline(always)]
fn print_red(&self) {
print!("\x1b\x5b\x31\x3b\x33\x31\x6d");
}
#[inline(always)]
fn print_neutral(&self) {
print!("\x1b\x5b\x31\x3b\x30\x6d");
}
#[inline(always)]
fn print_clear(&self) {
print!("\x1b\x5b\x48\x1b\x5b\x32\x4a");
}
#[inline(always)]
fn print(&self) { fn print(&self) {
for i in 0..NUM_FIELDS { for i in 0..self.num_fields {
if i != 0 && i % SIZE == 0 { if i != 0 && i % self.size == 0 {
println!(); println!();
} }
if i == self.pos { if i == self.pos_last_placed {
print_green(); self.print_red();
} else if i == self.pos {
self.print_green();
} else if self.get_field_at_pos(i) == 0 { } else if self.get_field_at_pos(i) == 0 {
print_gray(); self.print_gray();
} }
print!("{:2} ", self.get_field_at_pos(i)); print!("{:2} ", self.get_field_at_pos(i));
if i == self.pos || self.get_field_at_pos(i) == 0 { if i == self.pos || i == self.pos_last_placed || self.get_field_at_pos(i) == 0 {
print_neutral(); self.print_neutral();
} }
} }
println!(); println!();
} }
#[inline(always)]
fn clear_current_field(&mut self) { fn clear_current_field(&mut self) {
self.set(0); self.set(0);
} }
#[inline(always)]
fn goto_prev_free_field(&mut self) -> bool {
while {
if !self.is_fixed() {
return true;
}
self.prev()
} {}
false
}
#[inline(always)]
fn goto_next_free_field(&mut self) -> bool {
while {
if !self.is_fixed() {
return true;
}
self.next()
} {}
false
}
#[inline(always)]
fn _put_valid_nr(&mut self) -> bool {
let current_nr = self.get_field_at_pos(self.pos);
for nr in current_nr..self.size + 1 {
if self.ok(nr) {
self.set(nr);
return true;
}
}
false
}
#[inline(always)]
fn put_valid_nr(&mut self) -> bool { fn put_valid_nr(&mut self) -> bool {
let current_nr = self.get_field_at_pos(self.pos); let current_nr = self.get_field_at_pos(self.pos);
// safety: // safety:
// self.possible_vals is initialized with self.size * self.size // self.possible_vals is initialized with self.size * self.size
// so self.pos can safely be used to index here // so self.pos can safely be used to index here
let possible_vals = &self.possible_values[self.pos]; let possible_vals = unsafe { self.possible_values.get_unchecked(self.pos) };
for nr in possible_vals { for nr in possible_vals.iter() {
if *nr <= current_nr { if *nr <= current_nr {
continue; continue;
} }
if self.ok(*nr) { let nr = *nr;
self.set(*nr); if self.ok(nr) {
self.set(nr);
return true; return true;
} }
} }
false false
} }
fn ok(&self, nr: u8) -> bool { #[inline(always)]
self.block_ok(nr) && self.row_ok(nr) && self.col_ok(nr) fn is_end(&self) -> bool {
!self.field.contains(&0)
} }
fn get_field_at_pos(&self, pos: usize) -> u8 { #[inline(always)]
fn ok(&self, nr: usize) -> bool {
//self.block_ok(nr) && self.row_ok(nr) && self.col_ok(nr)
let (x, y, block_nr) = pos_to_xy_blocknr(self.pos, self.size);
!self.rows[y].get(nr - 1) && !self.cols[x].get(nr - 1) && !self.blocks[block_nr].get(nr - 1)
}
#[inline(always)]
fn is_fixed(&self) -> bool {
// safety: self.pos can be used to index the field unchecked
// since the only methods modifying self.pos are
// `next()` and `prev()` and they do bounds checking
unsafe { *self.fixed.get_unchecked(self.pos) == 1 }
}
#[inline(always)]
fn get_field_at_pos(&self, pos: usize) -> usize {
// safety: // safety:
// TODO // TODO
// would need to mathematically explain that the calculations in // would need to mathematically explain that the calculations in
@ -207,84 +463,125 @@ impl SField {
unsafe { *self.field.get_unchecked(pos) } unsafe { *self.field.get_unchecked(pos) }
} }
fn set(&mut self, nr: u8) { #[inline(always)]
self.field[self.pos] = nr; fn set(&mut self, nr: usize) {
let old = unsafe { self.field.get_unchecked_mut(self.pos) };
// if another number > 0 was in that cell, we need to remove that number from our bitsets
if *old > 0 {
let (x, y, block_nr) = pos_to_xy_blocknr(self.pos, self.size);
self.rows[y].unset(*old - 1);
self.cols[x].unset(*old - 1);
self.blocks[block_nr].unset(*old - 1);
} }
fn get_row(&self, row: &mut [u8; SIZE]) { // add new nr to our bitsets if it is a meaningful (> 0) number
if nr > 0 {
let (x, y, block_nr) = pos_to_xy_blocknr(self.pos, self.size);
self.rows[y].set(nr - 1);
self.cols[x].set(nr - 1);
self.blocks[block_nr].set(nr - 1);
}
// write the new number into the field
*old = nr;
// remember the last placed position for debugging purposes
self.pos_last_placed = self.pos;
}
/*
#[inline(always)]
fn get_row(&self, row: &mut [usize]) {
for (idx, row_elem) in row.iter_mut().enumerate() { for (idx, row_elem) in row.iter_mut().enumerate() {
*row_elem = self.get_field_at_pos((self.pos / SIZE) * SIZE + idx); *row_elem = self.get_field_at_pos((self.pos / self.size) * self.size + idx);
} }
} }
fn get_col(&self, col: &mut [u8; SIZE]) { #[inline(always)]
fn get_col(&self, col: &mut [usize]) {
for (idx, col_elem) in col.iter_mut().enumerate() { for (idx, col_elem) in col.iter_mut().enumerate() {
*col_elem = self.get_field_at_pos(idx * SIZE + self.pos % SIZE); *col_elem = self.get_field_at_pos(idx * self.size + self.pos % self.size);
} }
} }
fn get_block(&self, block: &mut [u8; SIZE]) { #[inline(always)]
let block_start_row = self.pos / SIZE / BLOCK_SIZE * BLOCK_SIZE; fn get_block(&self, block: &mut [usize]) {
let block_start_col = self.pos % SIZE / BLOCK_SIZE * BLOCK_SIZE; let block_start_row = self.pos / self.size / self.block_size * self.block_size;
let block_start_col = self.pos % self.size / self.block_size * self.block_size;
for r in 0..BLOCK_SIZE { for r in 0..self.block_size {
for c in 0..BLOCK_SIZE { for c in 0..self.block_size {
block[r * BLOCK_SIZE + c] = block[r * self.block_size + c] =
self.get_field_at_pos(SIZE * (block_start_row + r) + block_start_col + c); self.get_field_at_pos(self.size * (block_start_row + r) + block_start_col + c);
} }
} }
} }
fn block_ok(&self, nr: u8) -> bool { #[inline(always)]
let mut block = [0; SIZE]; fn block_ok(&self, nr: usize) -> bool {
self.get_block(&mut block); let mut block = [0; MAX_BLOCK_SIZE * MAX_BLOCK_SIZE];
self.get_block(&mut block[0..self.size]);
!block.contains(&nr) !block.contains(&nr)
} }
fn row_ok(&self, nr: u8) -> bool { #[inline(always)]
let mut row = [0; SIZE]; fn row_ok(&self, nr: usize) -> bool {
self.get_row(&mut row); let mut row = [0; MAX_BLOCK_SIZE * MAX_BLOCK_SIZE];
self.get_row(&mut row[0..self.size]);
!row.contains(&nr) !row.contains(&nr)
} }
fn col_ok(&self, nr: u8) -> bool { #[inline(always)]
let mut col = [0; SIZE]; fn col_ok(&self, nr: usize) -> bool {
self.get_col(&mut col); let mut col = [0; MAX_BLOCK_SIZE * MAX_BLOCK_SIZE];
self.get_col(&mut col[0..self.size]);
!col.contains(&nr) !col.contains(&nr)
} }
*/
#[inline(always)]
fn next(&mut self) -> bool { fn next(&mut self) -> bool {
let new_pos = self.pos + 1 + self.skip_forward[self.pos + 1] as usize; if self.pos == self.num_fields - 1 {
if new_pos >= NUM_FIELDS {
return false; return false;
} }
self.pos = new_pos; //println!("next {} -> {}", self.pos, self.pos + 1);
self.pos += 1;
true true
} }
#[inline(always)]
fn prev(&mut self) -> bool { fn prev(&mut self) -> bool {
let new_pos = self.pos - 1 - self.skip_backward[self.pos] as usize; if self.pos == 0 {
if new_pos >= NUM_FIELDS {
return false; return false;
} }
self.pos = new_pos; self.pos -= 1;
true true
} }
#[inline(always)]
fn solve(&mut self) { fn solve(&mut self) {
let now = Instant::now(); let now = Instant::now();
if !self.solve_backtracking() { if !self.solve_backtracking() {
println!("there is no solution."); println!("there is no solution.");
} }
eprintln!("took {:.3}s", now.elapsed().as_secs_f64()); println!("took {:.3}s", now.elapsed().as_secs_f64());
} }
} }
fn main() { fn run() -> Result<(), String> {
let mut field = SField::new(); let mut field = SField::new();
field.build_possible_values_db();
field.solve(); field.solve();
Ok(())
}
fn main() {
if let Err(e) = run() {
println!("{}", e)
}
} }